Descriptive Statistics D:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\FM.DBF

Variable Name is AREA

```
Percentiles:
                                     Tukey Five Number Summary:
0.0\% = 0.25 Minimum
                                     Minimum = 0.25
0.5%
           = 0.25
                                    Fourth = 0.75
2.5%
          = 0.25
                                    Median = 4.75
          = 0.25
                                    Fourth = 17.25
10.0%
          = 0.75 Ouartile
                                   Maximum = 102.00
25.0%
          = 4.75 Median
50.0%
          = 17.25 Ouartile
75.0%
90.0%
          = 36.79999
97.5%
          = 60.40001
          = 102.00
99.5%
                                     Test for normality results:
100.0%
          = 102.00 Maximum
                                    D = .242 p <= 0.001
```

Five number summary was calculated using the technique from UNDERSTANDING ROBUST AND EXPLORATORY DATA ANALYSIS by Hoaglin, Mosteller And Tukey. See complete reference in WINKS manual.

Confidence Intervals about the mean:

```
80 % C.I. based on a t(126) critical value of 1.29 is (10.3415, 14.29236) 90 % C.I. based on a t(126) critical value of 1.66 is (9.7749, 14.85896) 95 % C.I. based on a t(126) critical value of 1.98 is (9.28487, 15.34899) 98 % C.I. based on a t(126) critical value of 2.36 is (8.70296, 15.9309) 99 % C.I. based on a t(126) critical value of 2.62 is (8.30481, 16.32905)
```

The normality test suggests that the data are not normally distributed. The test for normality is a modified Kolmogorov-Smirnov test based on papers by Lilliefors and Dallal & Wilkinson. References in latenews.txt.

FM Closures - Area

AREA

Descriptive Statistics D:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\FM.DBF

Variable Name is HEIGHT

Percentiles:		Tukey Five Number Summary:
0.0%	= 0.60 Minimum	Minimum = 0.60
0.5%	= 0.60	Fourth = 85.00
2.5%	= 15.86	Median = 272.30
10.0%	= 34.00	Fourth = 591.40
25.0%	= 84.60 Quartile	Maximum = 2128.30
50.0%	= 272.30 Median	
75.0%	= 591.50 Quartile	
90.0%	= 962.2799	
97.5%	= 1671.621	
99.5%	= 2128.30	Test for normality results:
100.0%	= 2128.30 Maximum	D = .174 $p <= 0.001$

Five number summary was calculated using the technique from UNDERSTANDING ROBUST AND EXPLORATORY DATA ANALYSIS by Hoaglin, Mosteller And Tukey. See complete reference in WINKS manual.

Confidence Intervals about the mean:

```
80 % C.I. based on a t(126) critical value of 1.29 is (358.41474, 457.43251) 90 % C.I. based on a t(126) critical value of 1.66 is (344.21452, 471.63273) 95 % C.I. based on a t(126) critical value of 1.98 is (331.93324, 483.914) 98 % C.I. based on a t(126) critical value of 2.36 is (317.34923, 498.49802) 99 % C.I. based on a t(126) critical value of 2.62 is (307.3707, 508.47655)
```

The normality test suggests that the data are not normally distributed. The test for normality is a modified Kolmogorov-Smirnov test based on papers by Lilliefors and Dallal & Wilkinson. References in latenews.txt.

FM Closures - Height

HEIGHT (100s)

Linear Regression and CorrelationD:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\FM.DBF

Linear Regression and CorrelationD.\PROJECTS\NPRA\TOPSRE~I\WINKST~I\FM.DBF

Dependent variable is HEIGHT, 1 independent variables, 127 cases.

Variable	Coefficient	St. Error	t-value	p(2 tail)
Intercept	182.04332	32.30927	5.6343992	<.001
AREA	18.339011	1.5278707	12.002986	<.001

R-Square = 0.5354 Adjusted R-Square = 0.5317

Analysis of Variance to Test Regression Relation

Source	Sum of Sqs	df	Mean Sq F	p-value
Regression Error	12620359.7181 1.09E+07	_	12620359.7181 144.07167 87597.786	<.001
Total	23570082.9932	126		

A low p-value suggests that the dependent variable HEIGHT may be linearly related to independent variable(s).

MEAN X = 12.317 S.D. X = 17.257 CORR XSS = 37524.93 MEAN Y = 407.924 S.D. Y = 432.509 CORR YSS = 23570090.0 REGRESSION MS=12620359.718 RESIDUAL MS= 87597.786

Pearson's r (Correlation Coefficient) = 0.7317

The linear regression equation is:
HEIGHT = 182.0433 + 18.33901 * AREA

Test of hypothesis to determine significance of relationship: H(null): Slope = 0 or H(null): r = 0 (two-tailed test) t = 12.0 with 125 degrees of freedom p <= .001

Note: A low p-value implies that the slope does not = 0.

Correlation Coefficients D:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\FM.DBF

Variables used : AREA and HEIGHT

Number of cases used: 127

Pearson's r (Correlations Coefficient) = 0.7317 R-Square = 0.5354

Test of hypothesis to determine significance of relationship: H(null): Slope = 0 or H(null): r = 0

(Pearson's) t = 12.00299 with 125 d.f. p < 0.001 (A low p-value implies that the slope does not = 0.)

Spearman's Rank Correlation Coefficient = 0.7590

(Spearman's) t = 13.03485 with 125 d.f. p < 0.001

Linear Regression and CorrelationD:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\FM.DBF

Linear Regression and CorrelationD.\PROUECIS\NPRA\TOPSRE~1\WINKSI~1\FM.DBF

Dependent variable is LOGHEIGHT, 1 independent variables, 127 cases.

Variable	Coefficient	St. Error	t-value	p(2 tail)
Intercept	4.6603246	.1049212	44.417383	<.001
LOGAREA	.5278959		11.138996	<.001

R-Square = 0.4981 Adjusted R-Square = 0.4941

Analysis of Variance to Test Regression Relation

Source	Sum of Sqs	df	Mean Sq	F	p-value	_
Regression Error	111.21284 112.03993	1 125	111.21284 .8963195	124.07723	<.001	
Total	223.25277	126				_

A low p-value suggests that the dependent variable LOGHEIGHT may be linearly related to independent variable(s).

MEAN X = 1.326 S.D. X = 1.78 CORR XSS = 399.079 MEAN Y = 5.36 S.D. Y = 1.331 CORR YSS = 223.252 REGRESSION MS= 111.213 RESIDUAL MS= .896

Pearson's r (Correlation Coefficient) = 0.7058

The linear regression equation is:
LOGHEIGHT = 4.660325 + .5278959 * LOGAREA

Test of hypothesis to determine significance of relationship: H(null): Slope = 0 or H(null): r = 0 (two-tailed test) t = 11.14 with 125 degrees of freedom p <= .001

Note: A low p-value implies that the slope does not = 0.

